大学生英语竞赛(NECCS)B类模拟试卷30
试卷名称:大学生英语竞赛(NECCS)B类模拟试卷29
Most people think of solar power as a flat panel on every rooftop. But photovoltaic panels have limitations. They work fine when the sun is strong, but when the clouds roll in you’ d better have batteries to run the TV and dishwasher. And even on the sunniest days the panels are not very well suited for cities, where roof space is limited.
For decades, engineers have been working on ways to catch the sun over a broad area concentrating it and using it to produce electricity on the same scale as centralized coal, hydro or nuclear power plants—hundreds of megawatts at a time. Several pilot plants have been operating in California, some for decades, but so far they have not had enough volume to force costs down to competitive levels.
Some countries are expected to go with much larger plants capable of generating more than 100 megawatts each. If some of the projects are completed, costs could come down from the current 15 cents a kilowatt-hour for the Mojave plant to 8 cents per kwh in the next 8 to 10 years. That would go a long way toward closing the gap with gas and oil, which now cost as little as 4 cents per kwh.
The Mojave plant is one of the world’ s first commercial solar power plants, with five solar Electric Generating Systems (SEGS) supplying electricity to southern California. The basic component of a SEGS plant is a row of mirrors that reflect sunlight onto a pipe filled with oil. The oil heats up and is used to produce steam, which turns an electrical turbine. Assemble a few dozen rows of these trough-mirrors, and you have got capacity to generate 30 megawatts of power, enough for half a small town. The problem with trough technology is that the oil loses its heat too quickly. When the sun goes down, so does the power.
A Solar Tres design uses molten salt instead of oil. Since salt holds more heat longer than oil, it can drive turbine through the night. Concentric rings of mirrors direct sunlight to a tank of molten salt. When the stuff is hot enough, some goes straight to a generator to produce steam, while the rest is stored for use at night. The 15-megawatt Solar Tres plant would be the first long-term commercial power production project. Since the electricity is expected to be costly close to 20 cents per kwh, the Spanish government plans to subsidize the plant.
The next big thing—Dish systems—is already in the works. The building block of such a plant is a parabolic mirror, shaped like a satellite dish, that reflects sunlight onto a small generator suspended in front. The heat drives a turbine. Theoretically a dish configuration would produce more energy per acre than other solar concentrating plants, that is, if engineers could figure out a good way of linking many dishes together.
Questions 66 ~ 70
Answer the following questions with the information given in the passage.
您可能感兴趣的题目
相关试卷
大学生英语竞赛(NECCS)B类模拟试卷30
大学生英语竞赛(NECCS)B类模拟试卷29
2019年大学生英语竞赛(NECCS)B类决赛真题试卷
2019年大学生英语竞赛(NECCS)B类初赛真题试卷
大学生英语竞赛B类完形填空专项强化真题试卷12
大学生英语竞赛B类完形填空专项强化真题试卷11
大学生英语竞赛B类完形填空专项强化真题试卷10
大学生英语竞赛B类完形填空专项强化真题试卷9
大学生英语竞赛B类完形填空专项强化真题试卷8
大学生英语竞赛B类完形填空专项强化真题试卷7
大学生英语竞赛B类完形填空专项强化真题试卷6
大学生英语竞赛B类完形填空专项强化真题试卷5
大学生英语竞赛B类完形填空专项强化真题试卷4
大学生英语竞赛B类完形填空专项强化真题试卷3
大学生英语竞赛B类完形填空专项强化真题试卷2
大学生英语竞赛B类完形填空专项强化真题试卷1
大学生英语竞赛B类阅读理解专项强化真题试卷20
大学生英语竞赛B类阅读理解专项强化真题试卷19
大学生英语竞赛B类阅读理解专项强化真题试卷18
大学生英语竞赛B类阅读理解专项强化真题试卷17