The Electron Microscope
The general layout of the illumination system and lenses of the electron microscope corresponds to the layout of the light microscope. The electrons are accelerated by a high-voltage potential (usually 40, 000 to 100, 000 volts), and pass through a condenser lens system usually composed of two magnetic lenses. The system concentrates the beam on to the specimen, and the objective lens provides the primary magnification. The final image in the electron microscope must be projected on to a phosphor-coated screen so that it can be seen. For this reason, the lenses that are the equivalent of the eyepiece in an optical microscope are called “projector“ lenses.
Normally, the electron microscope is upside-down when compared with the light microscope, with the electron gun at the top of the column and the fluorescent screen at the bottom. The screen is viewed through a window let into the front. The column of the microscope is held under high vacuum to prevent the electrons passing through it from striking air molecules and being scattered.
The strength of an electron lens depends on the current passing through the coil that produces the magnetic field. The strength of the lens can be varied by altering the current. In the electron microscope, therefore, the lenses are fixed, and adjustments are made to magnification and focus by altering the current passing through the lens coils. The condenser lens focuses the beam of electrons on to the specimen and affects the amount of illumination on the screen; the objective lens focuses the image; and the projector lenses alter the magnification.
Magnetic lenses suffer from the same defects (chromatic and spherical aberration) in the same way as glass lenses. But the same methods of correction cannot be used, because there is no “negative“ electron lens.
A very small lens aperture is employed to correct spherical aberration, but this severely limits the final resolution. Chromatic aberration is reduced by using electrons of a single wavelength. To produce such electrons, the accelerating voltage must be kept very steady because the wavelength of the beam is related to the accelerating voltage.
Electron-microscope lenses suffer from the further aberration of astigmatism, which affects light-microscope lenses to a far lesser degree. Astigmatism is caused by the lens having two focal planes for axes at right angles to each other .
Nothing can be done about astigmatism in an optical microscope. But in an electron microscope it can be corrected. Astigmatism in the electron microscope arises from two sources: from the lenses themselves, and from dirty apertures ( which are only 25 to 50 microns in diameter) in the objective lens. In both cases the astigmatism can be corrected by a skilled operator. In effect, the electron microscope achieves its superior resolution more in spite of, than because of, its lenses.